79 research outputs found

    On the Complexity and Performance of Parsing with Derivatives

    Full text link
    Current algorithms for context-free parsing inflict a trade-off between ease of understanding, ease of implementation, theoretical complexity, and practical performance. No algorithm achieves all of these properties simultaneously. Might et al. (2011) introduced parsing with derivatives, which handles arbitrary context-free grammars while being both easy to understand and simple to implement. Despite much initial enthusiasm and a multitude of independent implementations, its worst-case complexity has never been proven to be better than exponential. In fact, high-level arguments claiming it is fundamentally exponential have been advanced and even accepted as part of the folklore. Performance ended up being sluggish in practice, and this sluggishness was taken as informal evidence of exponentiality. In this paper, we reexamine the performance of parsing with derivatives. We have discovered that it is not exponential but, in fact, cubic. Moreover, simple (though perhaps not obvious) modifications to the implementation by Might et al. (2011) lead to an implementation that is not only easy to understand but also highly performant in practice.Comment: 13 pages; 12 figures; implementation at http://bitbucket.org/ucombinator/parsing-with-derivatives/ ; published in PLDI '16, Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, June 13 - 17, 2016, Santa Barbara, CA, US

    Pushdown Control-Flow Analysis of Higher-Order Programs

    Full text link
    Context-free approaches to static analysis gain precision over classical approaches by perfectly matching returns to call sites---a property that eliminates spurious interprocedural paths. Vardoulakis and Shivers's recent formulation of CFA2 showed that it is possible (if expensive) to apply context-free methods to higher-order languages and gain the same boost in precision achieved over first-order programs. To this young body of work on context-free analysis of higher-order programs, we contribute a pushdown control-flow analysis framework, which we derive as an abstract interpretation of a CESK machine with an unbounded stack. One instantiation of this framework marks the first polyvariant pushdown analysis of higher-order programs; another marks the first polynomial-time analysis. In the end, we arrive at a framework for control-flow analysis that can efficiently compute pushdown generalizations of classical control-flow analyses.Comment: The 2010 Workshop on Scheme and Functional Programmin

    Introspective Pushdown Analysis of Higher-Order Programs

    Full text link
    In the static analysis of functional programs, pushdown flow analysis and abstract garbage collection skirt just inside the boundaries of soundness and decidability. Alone, each method reduces analysis times and boosts precision by orders of magnitude. This work illuminates and conquers the theoretical challenges that stand in the way of combining the power of these techniques. The challenge in marrying these techniques is not subtle: computing the reachable control states of a pushdown system relies on limiting access during transition to the top of the stack; abstract garbage collection, on the other hand, needs full access to the entire stack to compute a root set, just as concrete collection does. \emph{Introspective} pushdown systems resolve this conflict. Introspective pushdown systems provide enough access to the stack to allow abstract garbage collection, but they remain restricted enough to compute control-state reachability, thereby enabling the sound and precise product of pushdown analysis and abstract garbage collection. Experiments reveal synergistic interplay between the techniques, and the fusion demonstrates "better-than-both-worlds" precision.Comment: Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming, 2012, AC
    • …
    corecore